

I
Platone

PLATform for Operation of distribution NEtworks

I

D2.6 v1.0
 Platone DSO Technical Platform

(v1)

The project PLATform for Operation of distribution
NEtworks (Platone) receives funding from the
European Union's Horizon 2020 research and innovation
programme under Grant Agreement no 864300.

Deliverable D2.6

Platone – GA No 864300 Page 2 (24)

Project name Platone

Contractual delivery date: 28.02.2021

Actual delivery date: 28.02.2021

Main responsible: Siemens SPA

Work package: WP2 – Platform Implementation and Data Handling

Security: P

Nature: DEM

Version: V1.0

Total number of pages: 24

Abstract
The Platone Open Framework aims to create an open, flexible and secure system that enables
distribution grid flexibility/congestion management mechanisms, through innovative energy market
models involving all the possible actors at many levels (DSOs, TSOs, customers, aggregators). The
Platone Framework is an open source framework based on blockchain technology that enables a
secure and shared data management system, allows standard and flexible integration of external
solutions (e.g. legacy solutions), and is open to integration of external services through standardized
open application program interfaces (APIs).
This document accompanies the software delivery of the Platone DSO Technical Platform and
extends it with an architecture overview and the discussion of a demonstration setup.
The Platone DSO Technical Platform is part of the Platone Open Framework that will be integrated,
tested and evaluated in three different demo sites in: Greece, Germany and Italy. Each of these demo
sites will integrate different parts of the framework.
In particular, this version of the DSO Technical Platform will be integrated and validated within the
Greek and German demo sites and their according architectures.

Keyword list
Platone DSO Technical Platform, Platone Framework, Open Source, micro-service, control centre,
kubernetes

Disclaimer
All information provided reflects the status of the Platone project at the time of writing and may be
subject to change. All information reflects only the author’s view and the Innovation and Networks
Executive Agency (INEA) is not responsible for any use that may be made of the information
contained in this deliverable.

Deliverable D2.6

Platone – GA No 864300 Page 3 (24)

Executive Summary
The energy system is facing an incredible revolution whose end target is the creation of a new energy
scenario widely dominated by renewable energy sources and mostly based on distributed energy
generation. At the centre of this process is the distribution network where the majority of the new energy
sources are and will be connected. Flexibility is a key resource in a scenario in which the grid is more
and more changing from being a load-driven system to a generation-driven system, given the partial
control on energy intake from renewable energy sources. This process implies also that the changes
are not only related to the operational aspects but also to the market element. Digitalization is a key
enabler of this process, opening the way to smart and efficient management of data sources in a secure
way and making the separation between market and operation less and less meaningful.

The Platone project proposes an innovative approach for supporting the DSOs and other involved
stakeholders in the energy transition phase. Platone aims to support the observability of the network
and the exploitation of the flexibility to solve both the volatility of renewable energy sources and the less
predictable consumption patterns.

The Platone solution consists of a layered set of platforms to meet the needs of system operators,
aggregators and end users, named Platone Open Framework.

The Platone DSO Technical Platform is part of that framework and aims at enabling DSOs to fulfil
market requests by evaluating the current grid state and activating local flexibility requests while
ensuring the reliability and operational quality of service. Therefore, a micro service based platform
architecture is presented that allows the deployment of services state-estimation and load prediction.
Furthermore, the platform aims at an enlarged grid observability by providing a visualization of measured
and predicted data.

Deliverable D2.6

Platone – GA No 864300 Page 4 (24)

Authors and Reviewers
Main responsible
Partner Name E-mail
SIEM
 Brunella Conte brunella.conte@siemens,com
 Carlo Arrigoni carlo.arrigoni@siemens.com
Author(s)/contributor(s)
Partner Name
RWTH
 Jonas Baude
Reviewer(s)
Partner Name
APIO
 Alessandro Chelli
ARETI
 Gabriele Fedele
Approver(s)
Partner Name
RWTH
 Padraic McKeever

Deliverable D2.6

Platone – GA No 864300 Page 5 (24)

Table of Contents
1.1 Task 2.3 ... 7
1.2 Objectives of the Work Reported in this Deliverable ... 7
1.3 Outline of the Deliverable .. 7
1.4 How to Read this Document .. 8
2.1 Overview .. 9
2.2 Functionalities .. 10
2.3 Data Models ... 12
3.1 API Interfaces .. 14
3.2 Databus ... 14
3.3 UI Interfaces .. 14
5.1 Infrastructure requirements ... 16

5.1.1 Prerequisites.. 16
5.1.2 K3s .. 16
5.1.3 Helm .. 17

5.2 Deployment .. 17
5.2.1 Databus ... 17
5.2.2 Timeseries Database .. 18
5.2.3 Database Adapter ... 18
5.2.4 Visualization .. 19

Deliverable D2.6

Platone – GA No 864300 Page 6 (24)

1 Introduction
The project “PLATform for Operation of distribution Networks – Platone - aims to develop an architecture
for testing and implementing a data acquisitions system based on a two-layer approach that will allow
greater stakeholder involvement and will enable an efficient and smart network management. The tools
used for this purpose will be based on platforms able to receive data from different sources, such as
weather forecasting systems or distributed smart devices spread all over the urban area. These
platforms, by talking to each other and exchanging data, will allow collecting and elaborating information
useful for DSOs, transmission system operators (TSOs), customers and aggregators. In particular, the
DSO will invest in a standard, open, non-discriminating, economic dispute settlement blockchain-based
infrastructure, to give to both the customers and to the aggregator the possibility to more easily become
flexibility market players. This solution will see the DSO evolve into a new form: a market enabler for
end users and a smarter observer of the distribution network. By defining this innovative two-layer
architecture, Platone removes technical barriers to the achievement of a carbon-free society by 2050
[1], creating the ecosystem for new market mechanisms for a rapid roll out among DSOs and for a large
involvement of customers in the active management of grids and in the flexibility markets. The Platone
platform will be tested in three European trials in Greece, Germany and Italy and within the Distributed
Energy Management Initiative (DEMI) in Canada. The Platone consortium aims to go for a commercial
exploitation of the results after the project is finished. Within the H2020 programme “A single, smart
European electricity grid” Platone addresses the topic “Flexibility and retail market options for the
distribution grid”.

The Platone solution consists of a two-layer architecture named Platone Open Framework (cf. Figure
1) The Platone Open Framework includes the following three layers:

Blockchain Service Layer: this layer enables the deployment of different blockchain-based
components, providing a blockchain infrastructure and Smart Contracts services. In the context of
Platone, the Platone Market platform is an example of blockchain-based platform deployed on the
Blockchain Service Layer.

Blockchain Access Layer: this layer adds a further level of security and trustworthiness to the
framework. It is an extension of the physical infrastructure and performs multiple tasks, among which
are data certification and automated flexibility execution through Smart Contracts. It includes the
Blockchain Access Platform and the Shared Customer Database.

Platone DSO Technical Platform: it allows DSOs to manage the distribution grid in a secure, efficient
and stable manner. It is based on an open-source extensible microservices platform and allows to
deploy, as Docker containers, specific services for the DSOs and execute them on kubernetes. The
Data Bus layer, included on the DSO Technical Platform, allows integration both of other components
of the Platone framework and of external components (e.g. DSO Management System) with a direct
connection to the classical supervisory control and data acquisition (SCADA) system adopted by the
DSO and served by standard communication protocols.

Deliverable D2.6

Platone – GA No 864300 Page 7 (24)

Figure 1 Platone Open Framework

1.1 Task 2.3
This deliverable is related to the Task 2.3 that aims at the implementation of a DSO Technical Platform,
which allows a DSO to fulfil market requests by evaluating the current grid state and activating local
flexibility requests while ensuring the reliability and operational quality of service. Therefore, a micro
service based platform architecture is presented that allows the deployment of services state-estimation
and load prediction. Furthermore, the platform aims at an enlarged grid observability by providing a
visualization of measured and predicted data.

1.2 Objectives of the Work Reported in this Deliverable
The objective of this deliverable is to present the architecture of the Platone DSO Technical Platform
and its realization by standard components that allows for the integration of custom DSO system
services. The Platone description of action defines this deliverable as a demonstrator. This document
accompanies the code repository with a more detailed architecture description as well as some extended
deployment instructions for deploying, testing and integrating the platform.

1.3 Outline of the Deliverable
The second Chapter of this document describe the first realization of the Platone DSO Technical
Platform according to the specification provided in Deliverable D2.1 [1] and discusses a data
visualization stack in more detail, as well as the functionalities expected for the first release of the
platform. Chapter 3 provides a brief overview of Interfaces and Communication Mechanisms. Chapter
4 delivers a compilation of Languages, Technologies and External Tools used throughout the platform.
Chapter 5 is closely linked to the software delivery and provides detailed installation, setup and
configuration instructions. Finally, Chapter 6 concludes this deliverable.

Deliverable D2.6

Platone – GA No 864300 Page 8 (24)

1.4 How to Read this Document
This document reports the software delivery of the Platone DSO Technical Platform, which is part of the
Platone Open Framework that is implemented within WP2 of Platone. For a better understanding of the
open framework of platform and requirements for the platform, we recommend reading D2.1 [1].

Besides that, this document provides a condensed version of the platform documentation and relates it
to the formal design of the platform.

Deliverable D2.6

Platone – GA No 864300 Page 9 (24)

2 Platform Architecture
This chapter presents the architecture of the Platone DSO Technical Platform. The first section provides
a formal description of the architecture and the components that are already available in the first release
version. The second section provides a list of functions that are available as services and additional
services that Platone will develop on top of the first release version. Furthermore, a visualization stack
for PMU data visualization is presented in more detail as an exemplary basic use case of the platform
and as a tutorial.

2.1 Overview
The Platone DSO Technical Platform enables distribution system operators to fulfil market requests by
evaluating the current grid state and activating local flexibility requests while ensuring the reliability and
operational quality of service by enlarged grid observability. The platform design builds on previous work
done in the Horizon 2020 project SOGNO [10] and relies massively on a micro-service architecture.

The presented platform architecture aims at facilitating the transition to modular, micro-services based
control centre software solution for distribution system operators. This allows for faster adjustment and
independent development of components. The goal is to provide system operators and automation
software developers with an open source framework that exposes open APIs to plug in new automation
functions and supports industry standards such as CIM IEC61970 and IEC61850.

To address requirements such as high availability, scalability and modularity from the very beginning,
the DSO Technical Platform is designed for deployment on kubernetes [11] clusters. Kubernetes, also
known as K8s, is an open-source system for automation deployment, scaling and management of
containerized applications. As all microservices of the platform are per requirement containerized in
Docker [16] containers, they can easily be deployed on a kubernetes cluster. Kubernetes also simplifies
different deployment approaches: from edge- and public-cloud to on-premises installation. However, the
on-premises installation is considered the most relevant for a control centre platform. In order to
minimize initial hurdles, Platone provides detailed installation manuals for a local installation based on
the lightweight kubernetes distribution k3s [3].

Figure 2 illustrates the architecture of the DSO Technical Platform. The Databus is one of its core
components and is implemented by means of a message broker to which all services can publish and /
or subscribe in order to exchange data with other services, with field devices, or with external systems.
Field devices or external systems can be made available in the data bus either directly or through the
Platone Blockchain Access Layer [2].

Databus

The Databus is the core component of the DSO Technical Platform and is implemented as an MQTT
message broker. The first release of the platform uses the RabbitMQ [5] message broker with an MQTT
plugin. The Databus is accessible for all services within the platform and can also be exposed to outside
the cluster for integration of external devices, platforms or services. It shall be used for asynchronous
transfer of streaming data from field devices (e.g. PMUs) or setpoints.

Services

All services are able to connect to the Databus and may provide individual RESTful APIs as an interface
for other services or to be exposed to external clients (users or systems). All services for the platform
are deployed in Docker containers and restricted to the usage of the specified communication protocols.
The programming languages are not specified to allow a wide flexibility for service developers.

API Gateway

The API Gateway is responsible for routing API requests from clients (i.e. users or external systems) to
the related services while ensuring authentication, authorization, and security policies. Besides, data

Deliverable D2.6

Platone – GA No 864300 Page 10 (24)

transformations on the transfer. The first release of the DSO Technical Platform uses the basic
functionality of the kubernetes ingress reverse proxy.

Figure 2 Platone DSO Technical Platform Architecture

2.2 Functionalities
The DSO Technical Platform supports a preliminary set of automation functionalities will be provided
together with the framework based on the outcome of the SOGNO project:

• A Load/generation prediction service, which can provide detailed information about the future
power demands and generated power to support planning and operation the power network.

• A state-estimation service that can calculate power loads at additional network nodes without
installing measurement devices at that location.

• A FLISR (Fault Location Isolation and Service Restoration) service for autonomous self-
healing of the grid.

• A data visualization stack.

The integration of the following services is foreseen by the Platone project:

• Probabilistic load forecasting: we foresee the integration of a machine-learning based
forecasting module that provides more advanced load predications.

Deliverable D2.6

Platone – GA No 864300 Page 11 (24)

• balancing of local energy community: we foresee the integration of a balancing service that
is capable of either minimizing the total energy consumption of an energy community or to handle energy
supply and exchange in bulk packages.

PMU Data Visualization Stack

As a demonstrator and validation for the platform architecture, we present a PMU data visualization
stack on the DSO Technical Platform. Figure 4 shows the concrete realization of the PMU data
visualization stack. Besides the default Databus and gateway components three services are used:

• time series database

• database adaptor

• visualization service

In this example scenario, the PMU collects measurements from the grid and publishes them to the data
bus. The database adaptor reads the measurements from the Databus and stores them in a time series
database. The third service visualizes the data in a customizable dashboard. Optionally, the API of the
database can also be exposed (dashed line) for external clients. Figure 3 shows an example of a
Grafana dashboard plotting three different measurements over time. (The values are randomly
generated by an emulated dummy PMU but traverse fully through the DSO technical platform as shown
in Figure 4).

Figure 3 PMU Data Visualization Dashboard

Deliverable D2.6

Platone – GA No 864300 Page 12 (24)

Figure 4 PMU Data visualization stack

2.3 Data Models
Work on definition and selection of data models is ongoing within the project consortium and the different
trial sites. The PMU visualization example uses a custom json format for PMU data that has successfully
been used for PMU data in previous research projects (cf. Figure 5). Besides that, we foresee the
integration of the DSO Data Server [2] in the Greek Demo (WP 4) that provides meter readings according
to the CIM industry standard CIM IEC 61968-9.

Deliverable D2.6

Platone – GA No 864300 Page 13 (24)

Figure 5 PMU Device Data

{
 "device": "pmu-0123",
 "timestamp": "TIMESTAMP",
 "readings": [
 {
 "component": "BUS1",
 "measurand": "voltmagnitude",
 "phase": "A",
 "data": "RANDOM"
 },
 {
 "component": "BUS1",
 "measurand": "voltmagnitude",
 "phase": "B",
 "data": "RANDOM"
 },
 {
 "component": "BUS1",
 "measurand": "voltmagnitude",
 "phase": "C",
 "data": "RANDOM"
 },

 /* ... more readings can go here */

]
 }

Deliverable D2.6

Platone – GA No 864300 Page 14 (24)

3 Interfaces and Communication Mechanisms
This chapter provides an overview of the interfaces to the DSOTP and between its microservices (cf.
Chapter 2.1).

3.1 API Interfaces
This first release of the DSO Technical Platform does not expose custom REST APIs yet. For first
integrations and development setups, the standard REST API of the underlying database could be
exposed to external systems or platforms (not yet decided).

Services that we currently foresee to expose REST APIs:

• Forecasting

• State-estimation

• Energy Community Balancing

• Timeseries DB

The API documentation of the timeseries DB is available at [17]. All coming custom service APIs in the
DSO technical platform will be specified using OpenAPI [18] specification to ensure maintainability and
reduce development overhead. A more detailed discussion will follow in D2.9 (cf. [20]).

3.2 Databus
The Databus is the core component of the DSO Technical Platform and is implemented as an MQTT
message broker. For services running within the DSO Technical platform, the Databus exposes an
MQTT 3.1.1 compliant MQTT broker on the default port 1883.

For external clients (devices, platforms, and development tools) the port can be exposed as a node port.

A description of the message topic structure etc. is planned for D2.9 (cf. [20]).

3.3 UI Interfaces
The first release of the DSO Technical Platform includes a Grafana [8] integration for visualization of the
stored time series data.

Deliverable D2.6

Platone – GA No 864300 Page 15 (24)

4 Languages, Technologies and External Tools
The architecture of the DSO Technical platform consists of different open-source tools. The following
table provides an overview over the core components.

Table 1 Languages, Technologies and External Tools

Layer/Component Technologies/Framework Deployment Languages

Infrastructure

 kubernetes (K8s, K3s)

 Helm

 Docker

bare-metal

Databus RabbitMQ Helm Chart

Timeseries Database InfluxDB Helm Chart

Database Adapter Telegraf
Docker image

kubernetes
deployment

Go

Visualization Service Grafana Helm Chart

Deliverable D2.6

Platone – GA No 864300 Page 16 (24)

5 Packaging and Deployment
In order to ensure high availability, scalability and modularity, the DSO Technical Platform is designed
for deployment on a kubernetes [11] cluster. Kubernetes, also known as K8s, is an open-source system
for automation deployment, scaling and management of containerized applications. As all microservices
of the platform are per requirement containerized in docker [16] containers, they can be easily deployed
on a kubernetes cluster. Users that are already experienced with kubernetes and have access to a full-
fledged kubernetes cluster (either on-premises, hybrid or on public cloud infrastructure) can deploy the
DSO Technical Platform there. For other users, for development setups, or for edge cloud deployments
we provide instructions for setting up a minimal kubernetes cluster based on k3s [3], a lightweight
kubernetes distribution in the next section. All mentioned configuration files as well as the entire
documentation are available at [9].

5.1 Infrastructure requirements

5.1.1 Prerequisites
The single node setup was tested on the following operating systems:

• Ubuntu Server 20.04 LTS

• Ubuntu Desktop 20.04 LTS

Hardware recommendations:

• Memory: 8 GB

• Disc: 32 GB

In order to run a single node setup, we need to install kubernetes and the helm package manager. k3s
[3] is a powerful lightweight kubernetes installation that suits well for single node or edge deployments.
Helm is a package manager for kubernetes. We aim at providing helm charts for simple deployment of
the platform and all our services to make the installation as easy as possible. For alternative deployment
options we also recommend documentation provided by [15].

5.1.2 K3s
First, we need to install a k3s single node kubernetes cluster. Please refer to the official website [3] for
alternative installation methods. The simplest way is to use the official install script. Run the following
command to download and execute the official installation script.

$ curl -sfL https://get.k3s.io | sh -

Afterwards, we can verify our installation was successful by running

k3s kubectl get node

If the installation was successful, this should return a list of kubernetes nodes containing solely your
host as a master node.

Deliverable D2.6

Platone – GA No 864300 Page 17 (24)

5.1.3 Helm
Helm [4] is a package manager for kubernetes and provides detailed installation instructions on the
website. Again, the fastest way is to use the provided install script:

$ curl -sfL https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
| bash

Now, we can verify the helm installation.

$ helm --kubeconfig /etc/rancher/k3s/k3s.yaml list

Eventually, you might need to change the ownership of that file:

chown -R $USER /etc/rancher/k3s/

Finally, we can simplify the usage by setting the environment variable KUBECONFIG to our k3s.yaml
file. By default (following our tutorial), it should be located in /etc/rancher/k3s/.

$ export KUBECONFIG=/etc/rancher/k3s/k3s.yaml

5.2 Deployment
Once a kubernetes cluster and helm are available, the core components can be deployed. In all following
examples, we will use the namespace “dsotp” for deploying platform components.

5.2.1 Databus
For deploying the Databus via helm, the respective helm charts must be added to the local repository.
Afterwards, the RabbitMQ broker can be installed. The file rabbitmq_values.yaml contains specific helm
values for configuring the broker.

$ helm repo add bitnami https://charts.bitnami.com/bitnami
$ helm repo update
$ helm install -n dsotp --create-namespace -f Databus/rabbitmq_values.yaml
 rabbitmq bitnami/rabbitmq

This proposed deployment exposes the Databus externally on port 31883 and can be used by devices
and external services or platforms.

A simple mosquitto_pub and mosquitto_sub [19] are useful for testing the external MQTT
connectivity. Simply run them outside the cluster. In case of doubt, the –v might come in handy.

$ mosquitto_sub -h [IP or FQDN] -p 31883 -t /dev/test -u admin -P admin

Deliverable D2.6

Platone – GA No 864300 Page 18 (24)

$ mosquitto_pub -h [IP or FQDN] -p 31883 -u admin -P admin -t /dev/test -f
test_data.json

5.2.2 Timeseries Database
For deploying the time series database, the respective helm charts must be added to the local
repository. Afterwards, influxdb [6] can be deployed using the provided values file.

$ helm repo add influxdata https://influxdata.github.io/helm-charts
$ helm repo update
$ helm install influxdb influxdata/influxdb -n dsotp -f ts-database/influxdb-helm-
values.yaml

Once the service is deployed, it needs additional preparation in order to initialize the database. The
name of the pod executing the influx container can be obtained by running:

$ kubectl --namespace dsotp get pods

With the pod name, it is possible to log in and run the influxdb cli

kubectl --namespace dsotp exec -i -t [pod name] /bin/sh

$ influx

Create database and user telegraf [7] and grant access

> CREATE DATABASE telegraf

> SHOW Databases

> CREATE USER telegraf WITH PASSWORD 'telegraf'

> GRANT ALL ON "telegraf" TO "telegraf"

5.2.3 Database Adapter
Since telegraf does not support nested json messages very well at the moment, the telegraf GitHub
repository was forked and extended [12] but while writing this report, there is no helm chart yet.

In order to deploy the database adapter, a kubernetes configmap [13] has to be created and
afterwards the adapter can be deployed:

Deliverable D2.6

Platone – GA No 864300 Page 19 (24)

$ kubectl apply -k ts-adapter/
$ kubectl apply -f ts-adapter/telegraf-deployment.yaml

5.2.4 Visualization
Deploying the Grafana [8] visualization services completes the PMU Visualization stack.

$ helm install grafana stable/grafana -f visualization/grafana_values.yaml

After deploying the Grafana service, the dashboard password can be obtained from the service pod
by:

$ kubectl get secret -n dsotp grafana -o jsonpath="{.data.admin-password}" |
base64

 --decode ; echo

The Grafana web dashboard will be accessible via the IP or FQDN of the Platform node or the load
balancer of your full-fledged kubernetes.

Deliverable D2.6

Platone – GA No 864300 Page 20 (24)

6 Conclusion

The work done at this stage provided a first release of the Platone DSO Technical Platform that allows
for the implementation of flexibility control and grid observability tools based on a micro-service oriented
architecture.

The first release addresses the minimal requirements for integrating with other platforms of the Platone
Open Framework and for the development of demo site dependent services. A detailed description for
installation and configuration of platform components is provided to ensure the usability and the impact.
Moreover, continuous collaboration with the open-source SOGNO [14] community will facilitate the
interoperability with and integration of other services such as a real-time simulator for testing new
services.

The use of cloud-native technologies such as kubernetes allows for a scalable and flexible deployment
of the platform from a single node on-premises control-room software to a distributed, cloud-based
solution that utilizes advantages of local edge-cloud deployments.

Furthermore, the open source approach will ensure a better outreach and re-use of the results as well
as an increment of the impact of the Platone project on the scientific community and in particular on the
energy stakeholders.

Deliverable D2.6

Platone – GA No 864300 Page 21 (24)

7 List of Tables
Table 1 Languages, Technologies and External Tools ... 15

Deliverable D2.6

Platone – GA No 864300 Page 22 (24)

8 List of Figures
Figure 1 Platone Open Framework ... 7
Figure 2 Platone DSO Technical Platform Architecture .. 10
Figure 3 PMU Data Visualization Dashboard .. 11
Figure 4 PMU Data visualization stack .. 12
Figure 5 PMU Device Data .. 13

Deliverable D2.6

Platone – GA No 864300 Page 23 (24)

9 List of References
[1] European Commission, “2050 long-term strategy”, [Online]. Available:

https://ec.europa.eu/clima/policies/strategies/2050_en

[2] Platone “D2.1 Platone Platform requirements and reference architecture (v1)” [Online].

Available: https://www.platone-h2020.eu/data/deliverables/864300_M12_D2.1.pdf

[3] “K3s” [Online]. Available https://k3s.io/

[4] “Helm – The package manager for Kubernetes” [Online]. Available https://helm.sh/

[5] “RabbitMQ” [Online]. Available https://www.rabbitmq.com/

[6] “InfluxDB Platform” [Online]. Available https://www.influxdata.com/products/influxdb-overview/

[7] “Telegraf Open Source” [Online]. Available https://www.influxdata.com/time-series-

platform/telegraf/

[8] “Grafana Cloud” [Online]. Available https://grafana.com/oss/grafana/

[9] “GitLab of the RWTH Aachen University” [Online]. Available https://git.rwth-

aachen.de/acs/public/deliverables/platone

[10] “SOGNO energy: Service Oriented Grid for the Network of the Future” [Online]. Available

https://www.sogno-energy.eu/

[11] “Kubernetes open source” [Online]. Available https://kubernetes.io/

[12] “Telegraf-sogno” [Online]. Available https://git.rwth-aachen.de/acs/public/third-party/telegraf-

sogno/

[13] “Kubernetes ConfigMaps” [Online]. Available

https://kubernetes.io/docs/concepts/configuration/configmap/

[14] “Sogno documentation” [Online]. Available https://sogno-platform.github.io/docs/

[15] “LF Energy – Sogno” [Online]. Available https://www.lfenergy.org/projects/sogno/

[16] “Docker: Empowering App Development for Developers” [Online]. Available

https://www.docker.com/

[17] “InfluxDB API reference - InfluxData Documentation” [Online]. Available

https://docs.influxdata.com/influxdb/v1.8/tools/api/

[18] “OpenAPI Initiative” [Online]. Available https://www.openapis.org/

[19] “Eclipse Mosquitto” [Online]. Available https://mosquitto.org/man/mosquitto_sub-1.html

[20] Grant Agreement No. 864300 – PLATONE

https://ec.europa.eu/clima/policies/strategies/2050_en
https://www.platone-h2020.eu/data/deliverables/864300_M12_D2.1.pdf
https://k3s.io/
https://helm.sh/
https://www.rabbitmq.com/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://grafana.com/oss/grafana/
https://git.rwth-aachen.de/acs/public/deliverables/platone
https://git.rwth-aachen.de/acs/public/deliverables/platone
https://www.sogno-energy.eu/
https://kubernetes.io/
https://git.rwth-aachen.de/acs/public/third-party/telegraf-sogno/
https://git.rwth-aachen.de/acs/public/third-party/telegraf-sogno/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://sogno-platform.github.io/docs/
https://www.lfenergy.org/projects/sogno/
https://www.docker.com/
https://docs.influxdata.com/influxdb/v1.8/tools/api/
https://www.openapis.org/
https://mosquitto.org/man/mosquitto_sub-1.html

Deliverable D2.6

Platone – GA No 864300 Page 24 (24)

10 List of Abbreviations

Abbreviation Term
DSO Distribution System Operator

DSOTP DSO Technical Platform

BLA Blockchain Access Layer

MQTT Message Queuing Telemetry Transport

REST REpresentational State Transfer

API Application Programming Interface

DB Database

PMU Phasor Measurement Unit

CIM Common Information Model

	Executive Summary
	Authors and Reviewers
	Table of Contents
	1 Introduction
	1.1 Task 2.3
	1.2 Objectives of the Work Reported in this Deliverable
	1.3 Outline of the Deliverable
	1.4 How to Read this Document

	2 Platform Architecture
	2.1 Overview
	2.2 Functionalities
	2.3 Data Models

	3 Interfaces and Communication Mechanisms
	3.1 API Interfaces
	3.2 Databus
	3.3 UI Interfaces

	4 Languages, Technologies and External Tools
	5 Packaging and Deployment
	5.1 Infrastructure requirements
	5.1.1 Prerequisites
	5.1.2 K3s
	5.1.3 Helm

	5.2 Deployment
	5.2.1 Databus
	5.2.2 Timeseries Database
	5.2.3 Database Adapter
	5.2.4 Visualization

	6 Conclusion
	7 List of Tables
	8 List of Figures
	9 List of References
	10 List of Abbreviations

