

Unrestricted

I
Platone

PLATform for Operation of distribution NEtworks

I

D2.3

Platone Market Platform (v1)

Deliverable D2.3

Platone – GA No 864300 Page 2 (32)

Project name Platone

Contractual delivery date: 28.02.2021

Actual delivery date: 28.02.2021

Main responsible: Ferdinando Bosco (ENG)

Work package: WP2 – Platform Implementation and Data Handling

Security: P

Nature: DEM

Version: V1.0

Total number of pages: 32

Abstract

The Platone Open Framework aims to create an open, flexible, and secure system that enables
distribution grid flexibility/congestion management mechanisms, through innovative energy market
models involving all the possible actors at many levels (DSOs, TSOs, customers, aggregators). The
Platone Framework is an open-source framework based on blockchain technology that enables a
secure and shared data management system, allows standard and flexible integration of external
solutions (e.g., legacy solutions), and is open to integration of external services through standardized
open application program interfaces (APIs).

This document accompanies the software delivery of the Platone Market Platform and extends it with
an architecture overview and the explanation of a demonstration setup.

The Platone Market Platform is part of the Platone Open Framework that will be integrated, tested
and evaluated in three different demo sites in: Greece, Germany and Italy. Each of these demo sites
will integrate different parts of the framework.

In particular, the first prototype of the Platone Market Platform will be integrated, tested and evaluated
in the Italian Demo Site Architecture.

Keyword list

Platone Market Platform, Flexibility Market, Blockchain Service Layer, Smart Contracts

Disclaimer

All information provided reflects the status of the Platone project at the time of writing and may be
subject to change. All information reflects only the author’s view and the Innovation and Networks
Executive Agency (INEA) is not responsible for any use that may be made of the information
contained in this deliverable.

Deliverable D2.3

Platone – GA No 864300 Page 3 (32)

Executive Summary

The energy system is facing an incredible revolution whose end target is the creation of a new energy
scenario widely dominated by renewable energy sources and mostly based on distributed energy
generation. At the centre of this process is the distribution network where the majority of the new energy
sources are and will be connected. Flexibility is a key resource in a scenario in which the grid is more
and more changing from being a load-driven system to a generation-driven system, given the partial
control on energy intake from renewable energy sources. This process implies also that the changes
are not only related to the operational aspects but also to the market element. Digitalization is a key
enabler of this process, opening the way to smart and efficient management of data sources in a secure
way and making the separation between market and operation less and less meaningful.

The Platone solution consists of a layered set of platforms to meet the needs of system operators,
aggregators, and end users, named Platone Open Framework.

The Platone Market Platform is one of the core components of the Platone Open Framework. It is a
blockchain-based platform that enables the management of wide geographical area flexibility requests
from TSOs and local flexibility requests from DSOs. The flexibility requests are matched with offers
coming from Aggregators, thus resolving conflicts according to pre-defined rules of dispatching priorities.
All the market operations are registered and certified within the blockchain service layer, ensuring a
higher level of transparency, security and trustworthiness among all the market players.

Furthermore, the Platone Market Platform enables an innovative incentivisation mechanism for
customer engagement based on blockchain technology, smart contracts, and tokenisation.

The first prototype of the Platone Market Platform focuses on the management of the Flexibility Day
Ahead Market, defining all the necessary data models and implementing all the core services and
components.

More in detail, it implements an API Gateway for collecting flexibility offers and requests coming from
DSOs, TSOs and Aggregators defining a specific data models that allows to match flexibilities with high
granularity. It also implements a clearing-matching algorithm based on price prioritization and
blockchain-based services for market validation and settlement.

The Platone Market Platform Communication layer includes the API Gateway and the Message Broker
for the integration of external services and platforms (e.g., DSO Technical Platform)

Furthermore, a first version of the Market Web Dashboard is released for allowing to the administrator
to monitoring all the market activities.

Deliverable D2.3

Platone – GA No 864300 Page 4 (32)

Authors and Reviewers

Main responsible

Partner Name E-mail

ENG

Ferdinando Bosco ferdinando.bosco@eng.it

Author(s)/contributor(s)

Partner Name

ENG

Angelo Triveri

Reviewer(s)

Partner Name

HEDNO

Eleni Daridou

 Stavroula Tzioka

NTUA

Panagiotis Pediaditis

Approver(s)

Partner Name

RWTH

Padraic McKeever

Deliverable D2.3

Platone – GA No 864300 Page 5 (32)

Table of Contents

1.1 Task 2.2 ... 6

1.2 Objectives of the Work Reported in this Deliverable ... 6

1.3 Outline of the Deliverable .. 6

1.4 How to Read this Document .. 7

2.1 Overview .. 8

2.2 Functionalities .. 10

2.2.1 Details of the first prototype ... 11

2.3 Data Models ... 11

3.1 API Interfaces .. 21

3.2 Message Broker .. 22

3.3 UI Interfaces .. 23

5.1 Deployment .. 26

5.2 Availability .. 27

Deliverable D2.3

Platone – GA No 864300 Page 6 (32)

1 Introduction

The project “PLATform for Operation of distribution Networks – Platone - aims to develop an architecture
for testing and implementing a data acquisition system based on a two-layer approach (an access layer
for customers and a distribution system operator (DSO) observability layer) that will allow greater
stakeholder involvement and will enable an efficient and smart network management. The tools used
for this purpose will be based on platforms able to receive data from different sources, such as weather
forecasting systems or distributed smart devices spread all over the urban area. These platforms, by
talking to each other and exchanging data, will allow collecting and elaborating information useful for
DSOs, transmission system operators (TSOs), customers and aggregators. In particular, the DSO will
invest in a standard, open, non-discriminating, economic dispute settlement blockchain-based
infrastructure, to give to both the customers and to the aggregator the possibility to more easily become
flexibility market players. This solution will see the DSO evolve into a new form: a market enabler for
end users and a smarter observer of the distribution network. By defining this innovative two-layer
architecture, Platone removes technical barriers to the achievement of a carbon-free society by 2050
[1], creating the ecosystem for new market mechanisms for a rapid roll out among DSOs and for a large
involvement of customers in the active management of grids and in the flexibility markets. The Platone
platform will be tested in three European trials in Greece, Germany and Italy and within the Distributed
Energy Management Initiative (DEMI) in Canada. The Platone consortium aims to go for a commercial
exploitation of the results after the project is finished. Within the H2020 programme “A single, smart
European electricity grid” Platone addresses the topic “Flexibility and retail market options for the
distribution grid”.

The Platone solution consists of a two-layer blockchain architecture named Platone Open Framework
that consists of a series of core components, including the Platone Market Platform.

The main goal of the Platone Market Platform is to enable a secure and transparent Flexibility Market,
exploiting blockchain technology and smart contracts, for handling the management of flexibility
services, providing market results to all the stakeholders, validating the flexibility provisioning, and
performing the settlement outcome with an innovative incentivisation mechanism for improving customer
engagement.

The Platone Market Platform will be implemented following the specifications and requirements
gathered in the first phase of the project and will be delivered in three different incremental versions.

1.1 Task 2.2

This deliverable is related to the Task 2.2 [2] that aims at the implementation of the Platone Market
Platform, following the functional and non-functional requirements defined in D2.1 [3].

1.2 Objectives of the Work Reported in this Deliverable
The objective of this deliverable is to present the first prototype of the Platone Market Platform and its
realization following the technical specification and requirements expected. The Platone Description of
Action defines this deliverable as a demonstrator. This document accompanies the code repository with
a more detailed architecture description as well as some extended deployment instructions for
deploying, testing and integrating the platform.

1.3 Outline of the Deliverable

The second Chapter of this document describes the first realization of the Platone Market Platform
according to the specification provided in Deliverable D2.1 [3] and discusses the functionalities
implemented in this first version more in detail. Chapter 3 provides a brief overview of Interfaces and
Communication Mechanisms. Chapter 4 delivers a compilation of Languages, Technologies and
External Tools used throughout the platform. Chapter 5 is closely linked to the software delivery and
provides detailed installation, setup, and configuration instructions. Finally, Chapter 6 concludes this
deliverable.

Deliverable D2.3

Platone – GA No 864300 Page 7 (32)

1.4 How to Read this Document

The document aims to give an overview to the Platone Market Platform prototype release. A description
of the foreseen functional and non-functional requirements expected can be found in D2.1 [3].

Deliverable D2.3

Platone – GA No 864300 Page 8 (32)

2 Platform Architecture

2.1 Overview

The Platone Market Platform consists of a three-layer architecture:

 UI Layer includes a web dashboard that allows market players (DSOs, TSOs and aggregators)
to manage their own market operations and Market Administrator to handle all the Market
Platform features;

 Services Layer provides the business logic, including the market-clearing tool, the flexibility
services, the settlement services and smart contract services;

 Data Layer provides the management of the market data and the registration of the market
operations within the blockchain infrastructure.

The communication layer allows the integration of external components and internal communication
among the different layers within the Market Platform. It provides both synchronous communication
interfaces (REST APIs) and asynchronous communication interfaces (Message Broker).

The blockchain service layer consists of a blockchain infrastructure, based on Ethereum blockchain
nodes, which enables the deployment of Smart Contracts.

The Market Platform architecture is shown in Figure 1.

Figure 1: Market Platform Architecture

UI Layer

The UI Layer includes the User Interfaces available for all the market participants. In particular, it
includes a Web Dashboard, accessible by DSOs, TSOs and Aggregators for monitoring their activities.

Services Layer

The Services Layer is the core of the Market Platform and it includes all the services that implement the
functionalities offered by the Market Platform.

Data Layer

Deliverable D2.3

Platone – GA No 864300 Page 9 (32)

The Data Layer manages all the data necessary for the implementation of Market Platform services and
it includes a NoSQL database for the storage of the Application Data. Furthermore, this layer implements
the business logic for the certification of the market data on the blockchain service layer.

Communication Layer

The Market Platform architecture includes a Communication Layer, a specific component that provides
two different communication mechanisms: synchronous and asynchronous. A specific architectural
component dedicated to communication mechanisms, provides a greater flexibility to the Market
Platform, which is able to cover different solution and integrate different external systems.

More in detail, the synchronous communication is implemented in the API Gateway via REST APIs. The
API gateway is the entry point for every HTTP request that is launched by the external systems. This
central component, shared by the whole Market Platform, allows some middleware functionalities to be
centralised, i.e.:

 Authentication
 Logging
 Caching
 Security
 Load Balancing

The asynchronous communication is implemented in the Message Broker. A message broker (or queue
manager) is a software where queues can be defined, applications may connect to the queue and
transfer a message onto it.

A message can include any kind of information. For example, it could include information about a
process/task that should start on another application (that could be on another server), or it could be
just a simple text message. The queue-manager software stores the messages until a receiving
application connects and takes a message off the queue. The receiving application then processes the
message in an appropriate manner.

A message broker can act as a middleware for various services (e.g. different external systems). They
can be used to reduce loads and delivery times by web application servers since tasks, which would
normally take quite a bit of time to process, can be delegated to a third party whose only job is to perform
them.

Message queueing allows web servers to respond to requests quickly instead of being forced to perform
resource-heavy procedures on the spot. Message queueing is also good when you want to distribute a
message to multiple recipients for consumption or for balancing loads between workers.

Blockchain Service Layer

The blockchain service layer is based on a blockchain infrastructure that includes Ethereum blockchain
nodes and smart contracts services.

In particular, the smart contracts ensure that all the processes and data flow included on the Market
Platform are certified thanks to blockchain infrastructure as well as to “tokenization” of the settlement
outcomes, enabling a token-based remuneration process that the DSO and/or TSO can exploit for
payments.

The remuneration process is implemented with the usage of ERC-20 tokens [4] as a way to reward or
penalise users involved in Market Operation. In particular, the tokens will be defined in a specific smart
contract and assigned to prosumers in exchange for the flexibility provided. The policy for the token
assignment is completely customizable and the aggregator will be responsible for specifying these
policies.

TSO Simulator

The TSO simulator is an external tool that simulates possible flexibility requests coming from TSOs for
solving possible congestion issues. This tool was developed by ENG only for simulation purposes and
it is an external component of the Platone Market Platform.

Deliverable D2.3

Platone – GA No 864300 Page 10 (32)

2.2 Functionalities

The Market Platform implements a series of functionalities in the Service Layer, some of these based
on blockchain technology. The services implemented in the service layer are:

 Flexibility Services
 Clearing Market Tool
 Settlement Services

Flexibility Services

The Market Platform is a “virtual” place in which Market Players can participate to the flexibility market,
in different market sessions, such as day-ahead and real time markets.

Before starting a new market session, the Market Platform receives the configuration of the network,
including PoD information. This information is fundamental to perform all the processes within the Market
Platform.

During an active market Session, the Market Platform is able to receive requests and offers for flexibility
services by the Market Participants (DSO and TSO for flexibility request, Aggregator for flexibility offers).

At the end of the market session, the Market Platform performs the economic phase of the Market
Clearing, matching the DSO’s and TSO’s request with the Aggregator’s offers.

Clearing Market Tool

The clearing market tool is highly configurable, and its main goal is to find among the various offers of
the aggregators, those that meet the DSO and TSO requests. All the offers that accomplish the request
are ordered according to an optimisation algorithm, based on a configurable multi-objective function.
This optimization algorithm is based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) which
provides a set of optimized solutions characterised by different suitable values with respect to the
different objective functions of the optimisation process. The objective functions are defined following
the indications coming from the use cases (e.g., in the Italian demo, DSO and price prioritisation).

At the end of the clearing phase, the Market platform produces a Market Outcome, which could be
provided to the DSO platform, for any technical validation.

The results of Market Validation and Technical Validation (if needed) is the Validated Market Outcome
which is shared with all the market participants.

In the Real Time (RT) Market, the collection of flexibility requests and offers is identical with respect to
the Day Ahead (DA) market. During the clearing step, the Market Platform considers both the results of
the RT session and those of the DA session for the following 4 hours.

Settlement Services

After the activation of the flexibilities, as agreed during the market session, the Market Platform has to
create the Settlement outcomes, and communicates them to DSO, TSO and Aggregator.

In order to perform the settlement, the Market Platform must know the remuneration mechanisms for
each Point of Delivery (PoD). Those information are provided by the Aggregator (a) and registered on
the blockchain through specific smart contracts. Each smart contract can be associated with a single
PoD or a cluster of PoDs in base of their type.

At the end of the settlement phase, DSO (or TSO if the related service was requested from them)
receives all the necessary information that allows them to pay for the received flexibility service.

In the blockchain ecosystem, the Market Platform is able to “tokenize” the settlement outcomes enabling
a token-based remuneration process that the Aggregator can exploit for performing the settlement of
the flexibility resources under its jurisdiction, incentivising the customer engagement.

Blockchain-based Services

The services implemented using Smart Contract and Blockchain technology are:

 Tracking and controlling the registration and validation of energy data and market data;

Deliverable D2.3

Platone – GA No 864300 Page 11 (32)

 Publishing bid/offer actions by Market Participants;
 Settlement certification;
 Token-based End-Customer incentivisation.

2.2.1 Details of the first prototype

The first prototype of the Platone Market Platform includes a subset of all the functionalities expected in
the functional requirements.

In particular:

 Only Day-Ahead Market Flexibility Services (no intra-day market);
 Clearing Market Tool based on price priority (no other optimisation mechanisms included),
 Settlement Outcomes and validation (feature completed);
 Blockchain and Smart Contract services for Settlement and Customer Incentivisation (no Market

Data certification),
 Basic version of Web Dashboard for Market Participants (extended version expected for the 2nd

prototype).

2.3 Data Models

The data models follow the Open API specification [5]

User

Table 1: User Model

Field Type Description

username String Required

password String Required

role String DSO, TSO, aggregator, admin

PoD

Table 2: PoD model

Field Type Description

podId String Required, pod identification string

aggregatorId String Required, aggregator identification string

zone String PoD geographic area

pomId String PoM identification string

pnp Number Active Power Withdrawn in kW

inp Number Active Power Feed in kW

inq Number Inductive Reactive Power in kVar

cnq Number Capacitive Reactive Power in kVar

Deliverable D2.3

Platone – GA No 864300 Page 12 (32)

sendTime Date Sending data Timestamp- format ISO-8601:
YYYY-MM-DDThh:mm:ss[.mmm]TZD

validityStart Date Validity Date - format ISO-8601: YYYY-MM-
DDThh:mm:ss[.mmm]TZD

flexibilityType String Type of flexibility offered [“continue”, “discrete”]

actionType String Type of allowed action
[“activate”,”modify”,”delete”]

smartContractId String ID of the associated smart contract for
settlement mechanism

powerCurvesDuration Number Curve duration in hours (default 24)

powerCurveInterval Number Curve interval in minutes (default 15)

powerBaselineCurves PowerBaselineCurvesObject Typical POD power baseline

maxFlexibility MaxFlexibilityObject Maximum flexibility

PowerBaselineCurvesObject

Table 3: Power Baseline Curves Object Model

Field Type Description

Workday [{index,p,q}] Typical power baseline in a workday

index: [from 0 to 95] is the timeslot of the day

p: active power in kW

q: reactive power in kVar

Saturday [{index,p,q}] Typical power baseline on Saturday

index: [from 0 to 95] is the timeslot of the day

p: active power in kW

q: reactive power in kVAr

Sunday [{index,p,q}] Typical power baseline on Sunday

index: [from 0 to 95] is the timeslot of the day

p: active power in kW

q: reactive power in kVar

Deliverable D2.3

Platone – GA No 864300 Page 13 (32)

MaxFlexibilityObject

Table 4: Max Flexibility Object Model

Field Type Description

upperP Number Maximum flexibility up for active power in kW

downP Number Maximum flexibility down for active power in kW

upperQ Number Maximum flexibility up for reactive power in kVar

downQ Number Maximum flexibility down for reactive power in
kVar

MarketSession

Table 5: Market Session Model

Field Type Description

marketType String Required Market Type : “dayAhead” || realTime”

Status String Required Status of the session: “created”,
“active”, “closed”

Start Date Starting date of the session - format ISO-8601:
YYYY-MM-DDThh:mm:ss[.mmm]TZD

End Date Closing date of the session - format ISO-8601:
YYYY-MM-DDThh:mm:ss[.mmm]TZD

FlexibilityService

Table 6: Flexibility Service Model

Field Type Description

playerId String Required Id of the Market Player (DSO, TSO or
Aggregator)

startTime Date Starting date of the market timeframe - format
ISO-8601: YYYY-MM-DDThh:mm:ss[.mmm]TZD

duration Number Duration of the timeframe (in hours, e.g. 24)
default 24

interval Number Duration of the interval (in minutes, e.g. 15)
default 15

serviceType String Service Type: “offer” || “DSO_request” ||
“TSO_request”

Deliverable D2.3

Platone – GA No 864300 Page 14 (32)

marketType String Required Market Type : “dayAhead” || realTime”

marketSession String Id of the associated market session (used
internally)

playerServiceId String Required Unique Id for each flexibility offer
provided by the aggregator

flexibility [FlexibilityObject] Required Object that describes the flexibility
offer/request

FlexibilityObject

Table 7: Flexibility Object Model

Field Type Description

pod String Required Id of the PoD

realTime Boolean It is true if the flexibility offer can be re-submitted
in the real time market in case it is not accepted in
the day-ahead market

flexibileBlock Object It describes the flexible block offer

power [PowerObject] Required It describes the power request/offer

PowerObject

Table 8: Power Object Model

Field Type Description

Index String Index of the interval in the time frame (e.g. from 0
to 95 in day-ahead market)

p Number Active Power offered/requested (in kW)

pPrice Number Price for active power flexibility (€ per kW)

q Number Reactive Power offered/requested (in kVar)

qPrice Number Price for reactive power flexibility (€ per kVar)

MarketOutcome

Deliverable D2.3

Platone – GA No 864300 Page 15 (32)

Table 9: Market Outcome Model

Field Type Description

_id String The Market Outcome Id

startTime Date Starting date of the market timeframe - format
ISO-8601: YYYY-MM-DDThh:mm:ss[.mmm]TZD

duration Number Duration of the timeframe (in hours, e.g. 24)
default 24

interval Number Duration of the interval (in minutes, e.g. 15)
default 15

serviceType String Service Type: “offer” || “DSO_request” ||
“TSO_request”

marketType String Required Market Type : “dayAhead” || realTime”

marketSession String Required Id of the associated market session
(used internally)

flexibility [MatchedFlexibilityObject] Required Object that describes the matched
flexibility

MatchedFlexibilityObject

Table 10: Matched Flexibility Object Model

Field Type Description

pod String Required Id of the PoD

power [MatchedPowerObject] Required It describes the power request/offer

MatchedPowerObject

Table 11: Matched Power Object Model

Field Type Description

Index String Index of the interval in the time frame (e.g. from 0
to 95 in day-ahead market)

p Number Active Power matched (in kW)

priorityP Number Index of priority for the matched active power
(Max priority = 1)

q Number Reactive Power matched (in kVar)

Deliverable D2.3

Platone – GA No 864300 Page 16 (32)

priorityQ Number Index of priority for the matched reactive power
(Max priority = 1)

TechnicalOutcome

Table 12: Technical Outcome Model

Field Type Description

startTime Date Starting date of the market timeframe - format
ISO-8601: YYYY-MM-DDThh:mm:ss[.mmm]TZD

duration Number Duration of the timeframe (in hours, e.g. 24)

interval Number Duration of the interval (in minutes, e.g. 15)

marketType String Market Type : “dayAhead” || realTime”

marketOutcome String Required Unique identifier of related Market
Outcome

flexibility [AcceptedFlexibilityObject] Required Object that describes the accepted
flexibility from DSO

AcceptedFlexibilityObject

Table 13: Accepted Flexibility Object Model

Field Type Description

pod String Required Id of the PoD

power [AcceptedPowerObject] Required It describes the accepted power

AcceptedPowerObject

Table 14: Accepted Power Object Model

Field Type Description

Index String Index of the interval in the time frame (e.g. from 0
to 95 in day-ahead market)

acceptedPValue Number Active Power accepted (in kW) – Null if not
accepted

acceptedQValue Number Reactive Power accepted (in kVar) - Null if not
accepted

acceptedP String “OK” if accepted (totally or partially), “KO” if not
accepted

Deliverable D2.3

Platone – GA No 864300 Page 17 (32)

acceptedQ String “OK” if accepted (totally or partially), “KO” if not
accepted

ValidatedOutcome

Table 15: Validated Outcome Model

Field Type Description

startTime Date Starting date of the market timeframe - format
ISO-8601: YYYY-MM-DDThh:mm:ss[.mmm]TZD

duration Number Duration of the timeframe (in hours, e.g. 24)

interval Number Duration of the interval (in minutes, e.g. 15)

serviceType String Service Type: “offer” || “DSO_request” ||
“TSO_request”

marketType String Market Type : “dayAhead” || realTime”

marketOutcome String Required Unique identifier of related Market
Outcome

flexibility [ValidatedFlexibilityObject] Required Object that describes the validated
flexibility

ValidatedFlexibilityObject

Table 16: Validated Flexibility Object Model

Field Type Description

pod String Id of the PoD

power [ValidatedPowerObject] It describes the validated power

ValidatedPowerObject

Table 17: Validated Power Object Model

Field Type Description

Index String Index of the interval in the time frame (e.g. from 0
to 95 in day-ahead market)

acceptedPValue Number Active Power accepted (in kW)

acceptedPPrice Number Price accepted for active power (€ per kW)

Deliverable D2.3

Platone – GA No 864300 Page 18 (32)

rejectionTypeP String If rejected is “TEC” for technical rejection or
“COM” for Market rejection

acceptedQValue Number Reactive Power validated (in kVar)

acceptedQPrice Number Price accepted for reactive power (€ per kVar)

rejectionTypeQ String If rejected is “TEC” for technical rejection or
“COM” for Market rejection

playerServiceId String The reference Id of the aggregator offer for this
flexibility

Measurements

Table 18: Measurements Model

Field Type Description

aggregatorId String Id of the aggregator

pod String Required Id of the PoD

dataTime Number Required Interval of the measures - format ISO-
8601: YYYY-MM-DDThh:mm:ss[.mmm]TZD

anomaly String Anomaly Code

measures {energy

}

Required Measurements of the PoD in the
interval

setPoint SetPointObject Required Set point requested to PoD in the
interval

energy

Table 19: energy Model

Field Type Description

absorbedActiveEnergy {value, quality} In kWh

InjectedActiveEnergy {value, quality} In kWh

absorbedInductiveReactiveEnergy {value, quality} In kVarh

injectedInductiveReactiveEnergy {value, quality} In kVarh

absorbedCapacitiveReactiveEnergy {value, quality} In kVarh

injectedCapacitiveReactiveEnergy {value, quality} In kVarh

Deliverable D2.3

Platone – GA No 864300 Page 19 (32)

power

Table 20: power Model

Field Type Description

p Number Measured active power in the interval (in kW)

q Number Measured reactive power in the interval (in kVar)

SetPointObject

Table 21: Set Point Object Model

Field Type Description

marketOutcomeId String Reference Id of the market Outcome

activePower Number Requested active power in the interval (in kW)

reactivePower Number Requested reactive power in the interval (in kVar)

SmartContract

Table 22: Smart Contract Model

Field Type Description

_id String Id of the Smart Contract

timeFrames [TimeFrameObject] Required Different Time Frames with settlement
mechanisms

TimeFrameObject

Table 23: Time Frame Object Model

Field Type Description

dayOfTheWeek String [“Mon”, “Tue”, …]

fixedPrices [{interval, price}] Array of prices with interval (from 0 to 95) and
price (in €/kWh). In alternative to
percentagePrices

percentagePrices [{interval, price}] Array of prices with interval (from 0 to 95) and
price (% of the flexibility price). Alternative to
fixedPrices

Settlement

Deliverable D2.3

Platone – GA No 864300 Page 20 (32)

Table 24: Settlement Model

Field Type Description

marketOutcomeId String Required Id of the market outcome

marketType String Market Type : “dayAhead” || realTime”

flexibility [FlexibilitySettlementObject] Required It describes the flexibility settlement
for each pod

FlexibilitySettlementObject

Table 25: Flexibility Settlement Object Model

Field Type Description

pod String Id of the PoD

power [MeasuredPowerObject] Describes the measured power

MeasuredPowerObject

Table 26: Measured Power Object Model

Field Type Description

Index String Index of the interval in the time frame (e.g. from 0
to 95 in day-ahead market)

requestedP Number Active Power requested (in kW)

measuredP Number Active Power measured (in kW)

paidP Number Active power paid (in €)

penaltyP Number Active Power Penalty to be paid (in €)

requestedQ Number Reactive Power requested (in kVar)

measuredQ Number Reactive Power measured (in kVar)

paidQ Number Reactive power paid (in €)

penalty Number Reactive Power Penalty to be paid (in €)

requestPlayerId String Id of the DSO or TSO that requests for flexibility

offerPlayerId String Id of the Aggregator

Deliverable D2.3

Platone – GA No 864300 Page 21 (32)

3 Interfaces and Communication Mechanisms

3.1 API Interfaces

All the REST APIs exposed by the Platone Market Platform implement an authentication mechanism
based on Oauth2.0 [6] over HTTPS connection.

Below a table with the list of APIs exposed. The Open API standard documentation is available in the
GIT repository [7].

Table 27: Market Platform REST APIs

Name Url Method Parameters Responses

Retrieve
Smart
Contracts
List

/smartContracts GET In request:

aggregatorId : String

Success
(200)

smartContrac
ts:
Array[Smart
Contract]

Error (500)

Error
Message -
String

Update PoDs
Registry

/podRegistry POST In body:

Array[PoD]

Success
(200)

Success
Message:
String

Error (500)

Error
Message:
String

Create
Flexibility
Service

/flexibilityService POST In body:

FlexibilityService

Success
(200)
flexibilityServ
iceId: String

Error (500)

Error
Message -
String

Send
Technical
Outcomes

/technicalOutcome POST In body:

TechnicalOutcome

Success
(200)

Deliverable D2.3

Platone – GA No 864300 Page 22 (32)

Success
Message:
String

Error (500)

Error
Message:
String

Retrieve
Settlement
Outcomes

/settlements GET In request:

aggregatorId : String

Success
(200)

settlements:
Array[Settle
ment]

Error (500)

Error
Message -
String

3.2 Message Broker

The Platone Market Platform offers in its communication layer a Message Broker based on Apache
Kafka. All the connections to the Message Broker are secured through a mutual authentication based
on TLS [8].

Validated Outcome

The Market Platform publishes the Validated Outcome in the Message Broker. The Validated Outcomes
are filtered for each Market Participant (DSO, TSO and Aggregator(s)) and published in different Kafka
Topics. Each consumer is authorized to read in a specific topic.

Table 28: Message Broker Topics

Topic Publisher Subscriber Message

DSOOutcome Market Platform DSO Technical Platform Validated Outcome
filter by DSO

TSOOutcome Market Platform TSO Simulator Validated Outcome
filter by TSO

AggOutcome(Id) Market Platform Aggregator(id) Validated Outcome
filter by Aggregator
(id)

Deliverable D2.3

Platone – GA No 864300 Page 23 (32)

3.3 UI Interfaces

Login

The Login section allows access to the Market Platform web dashboard for both the administrator user
and the market participant users (DSO, TSO, and Aggregator). The system transmits the credentials to
the server, which according to the type of the user gives access to the related section.

Figure 2: Login Section

Dashboard

The Market Platform web dashboard is the Home Page of the Market Platform UI. It allows to the
administrator to visualise all the Market Platform activities (sessions, PoDs registry, flexibility services,
market results) and to a Market Participant to visualize all the historical market data related to him:
flexibility services (requests or offers) created, validated market outcomes and settlement.

Figure 3: Market Dashboard - Market Sessions

Deliverable D2.3

Platone – GA No 864300 Page 24 (32)

Figure 4: Market Dashboard - Flexibility Services

Figure 5: Market Dashboard - PoDs and Baseline

Deliverable D2.3

Platone – GA No 864300 Page 25 (32)

4 Languages, Technologies and External Tools

Table 29: Languages, Technologies and External Tools

Layer/Component Languages Technologies/Framework External Tools

UI Layer

Javascript

HTML5

CSS/SCSS

Docker

Vue.js
Nginx

Service Layer Javascript

Docker

NodeJs

ExpressJs

Data Layer Javascript
Docker

NodeJs
MongoDB

Communication Layer Javascript

Docker

REST APIs

NodeJs

Apache Kafka

Express Gateway

Blockchain Service Layer
Solidity

Docker

Truffle

Ethereum
Blockchain
Nodes

Deliverable D2.3

Platone – GA No 864300 Page 26 (32)

5 Deployment and availability

5.1 Deployment

The deployment process foresees using Docker containers. The use of Docker ensures not only an
easy deployment process and total portability of the solution, but also a high level of scalability of the
released applications.

Hardware

SO: Linux Host

Ram: > 4GB

Disco: > 100GB

Software

Docker > 18.06.1-ce

DB Container

$ docker run ‐d ‐‐name db <your‐volume‐path>:/data/db ‐p 27017:27017 mongo:latest

Kafka Container

$ cd app/kafka #location of docker‐compose.yml
$ export HOST_IP=<your‐ip‐address> #ip address for kafka listening
$ docker‐compose up ‐d

BackEnd Container

$ cd app #location of DockerFile
$ docker build ‐t platone‐market‐platform:1.0
$ docker run ‐p 8081:8081 ‐e DATABASE_URL=<your‐db‐url> ‐d platone‐market‐
platform:1.0

Web App Container

$ cd client #location of DockerFile
$ export API_URL=<your‐api‐url> #URL of BackEnd APP
$ docker build ‐t platone‐market‐platform‐ui:1.0
$ docker run ‐p 80:80 ‐p 443:443 ‐d platone‐market‐platform‐ui:1.0

Deliverable D2.3

Platone – GA No 864300 Page 27 (32)

5.2 Availability

The source code and the DockerFiles necessary for the deployment are available in the RWTH GIT
repository [7]. ENG also provides a demo version, hosted in its cloud environment located at Pont-Saint-
Martin (Italy).

Software REPO

Github -> https://git.rwth-aachen.de/acs/public/deliverables/platone

Demo Version

Web Dashboard -> https:// platone.eng.it

REST API -> http:// platone.eng.it:8080/api

Blockchain Interface -> http://platone.eng.it:8081/api/contracts

Message Broker -> http:/platone.eng.it:9042

Deliverable D2.3

Platone – GA No 864300 Page 28 (32)

6 Conclusion

The work done at this stage provided the first prototype of the Platone Market Platform that enables the
creation of a day-ahead flexibility market, the validation of the flexibility services and the provisioning of
the settlement outcomes. The blockchain technology ensures that Market Participants can participate
to the market in a secure and transparent way, and a token-based incentivisation for customer
engagement is enabled.

The first release of the Platone Market Platform implements a set of functionalities, as described in
Ch.2.2, for integrating the Platone Market Platform with other platforms of the Platone Open Framework
and for the integration within the Italian demo site.

In particular, the integration and validation in the Italian Demo site, will be a very important steps for
testing the first prototype of the platform in a real environment that exploit all the functionalities provided.

A detailed description for installation and configuration of platform components is provided to ensure the
usability. In addition, a demonstrative version of the entire Platone Market Platform architecture is
available within ENG cloud infrastructure.

Deliverable D2.3

Platone – GA No 864300 Page 29 (32)

7 List of Tables

Table 1: User Model .. 11

Table 2: PoD model ... 11

Table 3: Power Baseline Curves Object Model ... 12

Table 4: Max Flexibility Object Model .. 13

Table 5: Market Session Model ... 13

Table 6: Flexibility Service Model .. 13

Table 7: Flexibility Object Model ... 14

Table 8: Power Object Model .. 14

Table 9: Market Outcome Model ... 15

Table 10: Matched Flexibility Object Model ... 15

Table 11: Matched Power Object Model ... 15

Table 12: Technical Outcome Model ... 16

Table 13: Accepted Flexibility Object Model ... 16

Table 14: Accepted Power Object Model .. 16

Table 15: Validated Outcome Model ... 17

Table 16: Validated Flexibility Object Model ... 17

Table 17: Validated Power Object Model .. 17

Table 18: Measurements Model .. 18

Table 19: energy Model ... 18

Table 20: power Model .. 19

Table 21: Set Point Object Model .. 19

Table 22: Smart Contract Model ... 19

Table 23: Time Frame Object Model ... 19

Table 24: Settlement Model... 20

Table 25: Flexibility Settlement Object Model ... 20

Table 26: Measured Power Object Model ... 20

Table 27: Market Platform REST APIs .. 21

Table 28: Message Broker Topics ... 22

Table 29: Languages, Technologies and External Tools .. 25

Deliverable D2.3

Platone – GA No 864300 Page 30 (32)

8 List of Figures

Figure 1: Market Platform Architecture .. 8

Figure 2: Login Section .. 23

Figure 3: Market Dashboard - Market Sessions .. 23

Figure 4: Market Dashboard - Flexibility Services ... 24

Figure 5: Market Dashboard - PoDs and Baseline .. 24

Deliverable D2.3

Platone – GA No 864300 Page 31 (32)

9 List of References

[1] “European Commission 2050 long-term strategy,” [Online]. Available:
https://ec.europa.eu/clima/policies/strategies/2050_en.

[2] Grant Agreement No. 864300 – Platone.

[3] Platone_D2.1_PlatOne Platform requirements and reference architecture (v1).

[4] “ERC 20 specification - Github,” [Online]. Available:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md.

[5] “Open API 3.0 - Specifications,” [Online]. Available: https://swagger.io/specification/.

[6] “OAuth 2.0,” [Online]. Available: https://oauth.net/2/.

[7] “Platone GIT Repository,” [Online]. Available: https://git.rwth-
aachen.de/acs/public/deliverables/platone.

[8] B. Pournader, “What is two-way TLS?,” 23 May 2018. [Online]. Available:
https://benpournader.medium.com/what-is-two-way-tls-d90600e2fc06.

Deliverable D2.3

Platone – GA No 864300 Page 32 (32)

10 List of Abbreviations

Abbreviation Term

API Application Programming Interface

DA Day Ahead

DB Database

DSO Distribution System Operator

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

NSGA Non-dominated Sorting Genetic Algorithm

PoD Point of Delivery

PoM Point of Measurement

REST REpresentational State Transfer

RT Real Time

TLS Transport Layer Security

TSO Transmission System Operator

UI User Interface

